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A POLYNOMIAL METHOD FOR DETERMINING LOCAL EMISSION
INTENSITY BY ABEL INVERSION
By Chul Park and Dan Moore

Ames Research Center

SUMMARY

The Abel inversion is applied to the transformation of the measured
line-of-sight integrated radiation intensity from an axially symmetric plasma
light source into local emission intensity. Consideration of the physical
features of the plasma light source shows that the most appropriate approxi-
mation of the radial variation of emission is an even-power polynomial. Thus,
the measured integrated intensity is represented by a linear combination of
Abel transforms of even powers. The formula is precise near the axis of sym-
metry even when the integrated intensity is known at only two or three lateral
positions. The formula becomes inaccurate at large radial distances and is
suitable mainly when the emission intensity decreases monotonically toward the
boundary .

INTRODUCTION

The intensity of radiation energy observed from an optically thin plasma
is an integrated sum of the intensity of emission per unit volume along the
viewing line. When the plasma is axially symmetric, the radiative emission
per unit volume, defined here as emission intensity (or simply emission), can
be calculated from the observed integratced radiation intensity (or integrated
intensity) by solving Abel's integral equation through inversion (ref. 1).

In the process of Abel inversion, it is necessary to differcntiate the
cxperimentally obtained integrated intensity distribution with respect to the
distance along which it varies. Because the numerical differentiation magni-
fies the errors in the original data, most methods of Abel inversion result
in a large magnification of the experimental error, which is proportional to
the total number of points taken and is severest at the axis of symmetry.
Typically, there is a tenfold magnification of error when the intensities are
taken over 20 equally spaced intervals.

To reduce the effects of experimental error, one ordinarily smooths the
data by fitting (in a least-squares sense) a polynomial curve through the data
points. The corresponding curve points are then used as data points before
applying the Abel inversion to determine the emission. The number of terms
in the smoothing polynomial can be increased to reduce the sum of squares of
the deviations of the observed data from the theoretical curve. Ilowever,
high-order polynomials will oscillate, and the variation in slopes will



increase. Thus, one is compelled to smooth the data with a low-order poly-
nomial. A data fit with a low-degree polynomial, however, results in an
analytical error, that is, the error caused by failing to approximate a true
variation by a simple analytical expression. Therefore, in current Abel inver-
sion methods, a certain amount of error is introduced regardless of the number
of points taken to represent the measured distribution of integrated intensity.

The purpose of the present work is to derive a new method for Abel
inversion, applicable in certain cases, that will minimize the effects of
experimental error in determining emission intensity on and near the axis of
symmetry. Plasma emission intensity is assumed to vary such that it can be
expressed by a polynomial in even powers of the radial distance. The experi-
mental data, the integrated intensities, are fitted with a simple function
that, after Abel inversion, produces a polynomial of even powers. This method
is applied to two sets of typical experimental data. The proposed method is
shown to be accurate near the axis of symmetry at least to the same degree as
existing methods, even when only two or three data points are taken.

DERIVATION OF METHOD

ﬁ . Figurg 1 is a cross section of the
Emission infensiiy axisymmetric plasma under consideration.
per umit volume e{r) When the plasma is optically thin, the
radiation intensity measured by an
Observer observer is an integrated sum of volu-
ﬁﬁled metric emission that varies with lat-
miensity P(x) - erg] displacement x of the viewing
line. It has been shown (ref. 1) that
integrated intensity P(x) is an Abel
transform of emission intensity e(x);

that is,

r
O e(xr)r dr

lrz _ 2

P(x) = 2 (1)

X
Figure 1.- Cross section of axially symmetric,
optically thin radiation source.

where r, 1is the radius of the plasma boundary. The emission function e(r)
can be determined (ref. 1) from equation (1) through Abel's inversion to

obtain

r
- [ 7 Lenieod @

2 _ p2
r

In most laboratory plasmas, the following features exist:

1. At the origin, that is, on the axis of symmetry (r = 0), the emission
intensity is finite.




2. The derivative de/dr approaches zero as r approaches zero.

3. At the boundary (r = ro), the derivative (de/dr), is finite.
o

Analytical error can be minimized by fitting the most appropriate
function to the observed integrated intensity P(x). Table 1 lists four
classes of functions that involve polynomials and their Abel inversions. As
shown in table 1, if an even-power function represents the integrated inten-
sity, the slope of emission function at the boundary is infinite. This fea-
ture is in conflict with the physical nature of plasma, (3) above, and so the
method becomes inaccurate near the boundary. The odd-power functions have
singularities not only at the boundary but also at the origin. For example,
the linear function P(x) = x implies infinite emission at the origin. For
other odd-power functions, there is a term of the form 2" Zn r in the
expressions for the emission, which has an infinite curvature at the origin;
that is, the function e(r) exhibits a finite slope in the region near (but
not at) the origin, contrary to (2) above.

Because there is no singularity in the emission function in the range
0 =r %71y, the emission can always be approximated by a series in powers of
r. Table 1 shows the functions P(x) corresponding to the power functions of
r. For the emission function to be an odd-power function of r, the inte-
grated intensity must have a logarithmic variation near the origin. Because
the logarithmic term is undesirable, the preferred form of emission is an
even-power polynomial

m
e(r) =Z:bir2i (3)
i=0

in which m determines the last term of the series. It can be shown from
table 1 that the corresponding function for the integrated intensity is

m
P(x) = ,roz - XZIE: aixzi (4)
1i=0

Thus, when the experimentally determined integrated-intensity distribution is
represented with a function of the form equation (4), a high degree of accu-
racy is attained near the origin 1r = 0.

The coefficients aj and bj 1in equations (3) and (4) are related through
Abel's integral equation (1) (or eq. (2)). This relationship between the aj
and by is derived by substituting equation (3) into equation (1), as
described in appendix A. For values of m up to 5, explicit formulas for
determining by from given values of a; are presented in table 2.



TABLE 1.- ABEL TRANSFORMS OF FUNCTIONS INVOLVING POLYNOMIALS

T 2
1 0 P'(x)dx de de de
P(x) e(x) = - = f — kg - r
v X - o dr< /o To
1 0 0 0 L3
<2 _ % ol - 2 0 0 @
x* R é% (12 + 202) Jro? - 22 o 0 -
L :
i
x2n JroZ ~ 1 poly(r2)? 0 0 ”
I
3 3
X A, To + Ji‘:-_r‘ o © Finite
2 7 . 2
3 S 3[Io f7T I gn To *NTo" - 1% «
x - ( > NTo 5+ =5 2n = O(r tn 1) © '
i ' |
] rZ - 2 ] i
x2m*1 Ln I-fl—:——zSIZ_————I——poly(rz) + Jroz - 12 poly(r?) ! 0(r" 2n 1) 0 @ I
5 x
2 - &2 1 0 0 0
. % (ry? + 2x2).’r°2 - x2 r? 0 0 Finite
i%-(Sro“ + 4x2rg? + 8x%) J1oZ - X2 P 0 0 Finite
Jroz - x2 poly(xz)b ‘ r2n 0 0 Finite
|
fr.2 - %2 ‘
To JTo? - X + x2 in 29—:-§“~———§— T 0 0 0
T, Jo.2 - 2
2 (r,2 + 2 )Tl - B+ Db gy To¥NTO? - X2 3 0 0 Finite
o
2 o 2 4 X
JoZ . 2 '
J1.Z < % poly(x2) + tn R S X poly(xd) | r2n+l 0 0 Finite |

aPoly(r2) represents an even-power polynomial in r.

Poly (x?) represents an even-power polynomial in x.
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TABLE 2.- COEFFICIENTS bp IN e(r) =2:l%ﬁ@n AS DETERMINED
n=0

m
FROM THE COEFFICIENTS aj IN P(x) = [ro?— DI
n=Q

FOR ARBITRARY m

2 Terms
by = ag - 0.5a1r02
bl = 1.531

3 Terms
b, = ag - 0.5a;7,2 - 0.125a1y"
b; = 1.5a; - 0.75ap7,2
b2 = 2.12582

4 Terms

by = ao - 0.5a1r,2 - 0.125a,1," - 0.0625a374°
by = 1.5a; - 0.75a,7,° - 0.1875a3r0q

b, = 2.125a; - 0.9375a37r,?2

by = 2.1875a4

5 Terms

bo = ag - 0.5a1792 - 0.125a,5" - 0.0625a37% - 0.03125a,1,8
by = 1.5a; - 0.75a,1,% - 0.1875a37," - 0.09375a,r °
by = 2.125a, - 0.9375a3152 - 0.23437a,1y"

by = 2.1875a3 - 1.09375a,1,?

by = 2.4609a,




DETERMINATION OF THE COEFFICIENTS a;

When the integrated intensity P(xj) is known at M + 1 equally spaced
points x5 = 0, x; = 1ry/M, X3 = 2ry/M, © . ., Xj = jro/M, . . . , where M
is the number of zone divisions, the coefficients aj; of equation (4) can be
determined from the set of M + 1 linear eguations

2i N

P(XJ) (jr0> .
—_— = a.\ - > J

1=0

However, it must be noted that when j = M, the left side of equation (5) is
undefined. Physically, this difficulty is caused by the fact that both the

light-emitting volume and the integrated intensity vanish at x = r,. By
taking the limit x + r, 1in equation (2}, there follows

e(ry) = %—lim =

X1 JTo2 - X

Because both the numerator and the denominator in the right side of equation
(6) vanish, it is impossible to determine e(r,) experimentally without making
a suitable assumption on the behavior of P(x) near ry. Two methods were
developed to resolve this difficulty to satisfy two types of edge conditions.

Method 1

In the first method, the M + 1 equation is deleted so that only M
linear equations remain to be solved:

M-1

. 21
p(XJ) = a (lr_o) j
r T - G2 =t N\M ]

1=0

This gives rise to an M term approximation for the emission function. When
the last equation in (5) is deleted, the emission function is left to take an
arbitrary finite value at the boundary as dictated by the function values at
all other points. The e(ry) value given by this method may not be correct,
but it is valid as long as e(r) obeys the polynomial variation law of (3)
near 7rg. This method should be used if the variation of e(r) with r is
mild and if e(xry) is known to be finite, as in the case of the radiating
shock layer around the nose of a body of revolution moving at high speed. The
solutions for a; employing this method are presented in table 3.

6
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TABLE 3.- COEFFICIENTS b; IN e(r) =) bjr2l AS DETERMINED FROM P(x;),

1=0
(xj = jTo/M, 3 =0, 1, . . . , M); METHOD 1 (m = M-1, e(r,) # O ASSUMED)

1]
N

2 Zones, 2 Terms (M ,m= 1)

= [1.5P(0) - 1.i§47P(r0/2)]/r0
by = [-3P(0) + 3.4641P(r,/2)]1/1,3
3 Zonés, 3 Terms (M = 3, m = 2)
bo = [2.0469P(0) - 1.3921P(ro/3) - 0.3144P(21ro/3)]1/1o
by = [-16.0313P(0) + 20.2851P(ry/3) - 4.1507P(2ry/3)]1/1o°
by = [18.9844P(0) - 26.8480P(r,/3) + 8.4901P(2r0/3)]/ro5
4 Zones, 4 Terms (M = 4, m = 3)

bo = [3.2778P(0) - 2.7541P(xy/4) + 0.0770P(ry/2) - 0.2688P(3ry,/4)]/r,
by = [-43.0000P(0) + 55.7710P(ry/4) - 13.1636P(rg/2) + 0.6047P(31,/4)]/1s°
b, = [146.6667P(0) - 216.8871P(ro/4) + 83.1384P(10/2) - 13.1028P(310/4)]1/T0>
by = [-124.4444P(0) + 192.7885P(r0/4) - 86.2176P(r0/2) + 18.8142P(3r0/4)]/r07
‘ 5 Zones, 5 Terms (M =5, m = 4)
bg = [3.0694?(0) - 1.6997P(r0/5)7— 0.9633P (2r,/5) + 0.1274P(374,/5)

- 0.2052P(4r,/5) 1/,
by = [-93.2719P(0) + 124.2254P(ry/5) - 34.1480P(2ry/5) + 4.1847P(31y/5)

- 0.8236P(41,/5)1/1,°
by, = [579.7068P(0) - 877.7189P(ry/5) + 369.2683P(2ry/5) - 78.0015P(3ry/5)

+ 7.0663P(4r,/5) 1/ >
by = [-1260.9694P(0) + 2010.7037P(r0/5) - 997.0724P(2ro/5) + 283.9830P(3r0/5)

- 37.4405P(4r,/5) 1/t
by = [834.4651P(0) - 1362.6757P(ro/5) + 728.3808P(2ry/5) - 238.4186P(3ry/5)

+ 39.7364P (415/5)1/1o°




m .
TABLE 4.- COEFFICIENTS b, IN e(r) = - bir?’ AS DETERMINED FROM P(x5),

i=0

(xj = jro/M, 3 =0, 1, . . . , M); METHOD 2 (m = M, e(ry) = 0 ASSUMED)

2 Zones, 3 Terms (M= 2, m = 2)

[1.5P(0) - 1.1570P(ry/2)]1/7,

[-47.9167P(0) + 63.8956P(r,/4) - 17.7054P(r_/2) + 2.3038P(3r,/4)]/x °
[200.4167P(0) - 305.7075P(r,/4) + 132.7906P(r,/2) - 31.6700P(3ry/4)1/ry"
[-295.5556P (0) + 475.5450P(ro/4) - 244.2833P(1y/2) + 77.9447P(3r5/4)]1/1o7
[140.0000P(0) - 231.3962P(r,/4) + 129.3265P(r,/2) - 48.3795P(3r,/4)1/r,°

[696.2967P (0) - 1076.0422P(ro/5) + 490.4206P(215/5) - 130.0505P(3ry/5)
[-1937.2940P(0) + 3161.1553P(r,/5) - 1699.8635P(2ry/5) + 585.9137P(3r,/5)

[2253.0556P (o) - 3775.7473P(ry/5) + 2202.4849P(2r,/5) - 871.7180P(3r,/5)

b, =
by = [-5.25P(0) + 6.9282P(ry/2)]1/1o°
by = [3.75P(0) - 5.7735P(ry/2)1/10°
3 Zones, 4 Terms (M = 3, m = 3)
b, = [2.2266P(0) - 1.6780P(ry/3) - 0.1698P(2ry/3)]/7,
by = [-19.1016P(0) + 25.1700P(r,/3) - 6.6223P(2r,/3)]/r,>
by, = [39.0234P(0) - 58.7300P(r,/3) + 24.6212P(2r,/3)]/ry>
by = [-22.1484P(0) + 35.2379P(ry/3) - 17.8291P(2ry/3)1/ry’
4 Zones, 5 Terms (M = 4, m = 4)
by = [3.0556P(0) - 2.3870P(ry/4) - 0.1285P(ry/2) - 0.1920P(3ry/4)1/r,
by =
b, =
by =
by =
5 Zones, 6 Terms (M = 5, m = 5)
bo = [3.7293P(0) - 2.8221P(ro/5) - 0.2776P(2r,/5) - 0.1672P(3r,/5)
- 0.1180P(4r,/5) 1/,
by = [-97.8760P(0) + 132.0571P(ro/5) - 38.9323P(21r,/5) + 6.2401P(31,/5)
- 1.4326P(415/5)1/15°
b, =
+ 22.4882P(4ry/5)]/ro°
by =
- 126.9015P(415/5) 1/1o”
by =
+ 227.3807P(4ro/5)1/10°
bs =

[-917.9116P(0) + 1561.3993P(ro/5) - 953.8320P(2ry/5) + 409.7820P(3ry/5)
- 121.4169P(41o/5)1/xott




Method 2

In the second method, emission is assumed to be zero at the boundary.
Thus the full set of M + 1 linear equations in equation (5) was solved with
the condition

P(xj)

=0, i=M (8)
r J1 - (/M2

o

This method of solution provides an emission function of M + 1 terms and is
valid only when the emission decreases at a finite rate to zero at the bound-
ary (see eq. (6)). The results are presented in table 4.

Since two methods of solutions of equation (5) were employed, the upper
limit in the summation in equation (5) will be designated by m, where m =M
or m = M - 1 depending on which method is used. Appendix B presents the
method of computing the coefficients aj, and hence b;, from the given P(Xj)
for arbitrary values of m up to 5.

COMPARISON OF RESULTS

Dota set No.!, Fig.6 of Ref.2 Formulas derived in the preceding
S AN r0=1.0, P(0) =10 sections are applied to the two sets of
3 AN ——— Data set No.2, rg= 4.2, experimental data shown in figure 2.
o 8 N Plo)=2.259 Data set no. 1 is taken from figure 6
z of reference 2. Data set no. 2 was
é obtained by one of the present authors
é er during an experiment with an arc-heated
g wind tunnel (ref. 3). The measured
£ integrated intensity corresponding to
2 data set no. 2 is the continuum emis-
5 sion at wavelengths near 4000 A from
é L ionized nitrogen flowing through a wind
8’ tunnel. As shown, both sets of data
have been smoothed so that no error
| would be introduced or amplified
o) 2 . because of experimental scatter. The
Dimensionless coordinate, x/rg comparison thus tests the capability of
the present method to yield the same

Figure 2.- Two sets of integrated intensity data . . . .
used for testing the present method. inversion as can be attained by exist-

ing inversion methods in the absence of
experimental scatter. Except for the method of reference 2, which uses an
analog computer, the existing methods use high-order (20- or 30-zone) formulas
for greater accuracy. The present method limits the number of zones to 5; a
larger number results in oscillations at larger values of r.



Data Set No. 1

In figure 3(a), the present
method of inversion is compared with
other methods for the first set of data.
A 5-zone inversion formula of method 1
(formula 4 of table 3) is chosen for
this comparison. Corresponding results

CDxf Present method with 4-zone, 4-term and 3-zone, 3-term

Om= (Method 1) h ..
6 AM= formulas also are shown for the origin

O*mem‘R“-m r = 0. The results of inversions by

{ Nestor and Olsen (Ref.7)

A Sirola and Anderson (Ref.2) Sirola and Anderson (ref. 2} and

Hormann (ref. 4) are reproduced from
reference 2. (The method of Sirola and
Anderson is based on the analysis of
Pearce (ref. 5).) Bockasten's method
{(ref. 6) also was used; the result
agreed closely (a 2-percent discrepancy)
with that obtained by Nestor and Olsen
(ref. 7).} Edels, Hearne, and Young
(ref. 8) reproduced independently the
results obtained by Nestor and Olsen
and by Bockasten.

Emission Intensity, e, arbitrary units

© 2 Afzﬂrﬁ 8 10 Figure 3 indicates that the
° methods of both Hormann and Pearce
{(a) Data set no. L. (i.e., Sirola and Anderson) fail at the
origin. Hormann's method fails because
Figure 3.- Emission intensity obtained by of the necessity to evaluate the area
inversion of test data in figure 2. under an undefined curve near the ori-

gin. Pearce's method breaks down because it assumes a step-function variation
of integrated intensity that cannot describe the emission intensity near the
origin. The method of Nagler (ref. 9) is similar to that of Pearce. The
method of Dooley and McGregor (ref. 10) is similar to that of Hormann and has
the same mathematical difficulty caused by the singularity at the origin. In
the case of the Hormann inversion, and therefore Dooley and McGregor inversion,
the error due to the singularity at the origin adds to the deduced value of
emission over the entire range.

The methods of Nestor and Olsen and of Bockasten (or equivalently Edels
et al.) result in definite values for the emission at the origin because the
linear term is excluded in the inte%rated intensity (see table 1). However,
in these methods, the cubic term x is allowed as well as x?2, leading to
infinite curvature at the origin (see table 1). As a result, the derived
emission-intensity gradient is finite near the origin as shown, even though
the gradient of integrated intensity should be zero at the origin. This con-
tradicts the physical nature of the problem (feature (2) stated earlier).

1The proflle inverted by the Nestor-Olsen method shown in figure S(a) is
different from the corresponding profile in reference 2. As implied in refer-
ence 2, the Nestor-Olsen profile was found to be in error.

10




Nevertheless, of the existing methods, these of Nestor and Olsen and of
Bockasten appear the most accurate; Bockasten's is preferred because of its

closer piecewise curve fit (parabolic vs. linear for Nestor and Olsen) to the
integrated intensity.

The present method provides a well-defined finite emission value at the
origin and a smooth parabolic change near the origin. The peak value of
emission intensity calculated by the present method agrees closely with those
obtained by the better of the existing methods. The present method fails,
however, at large values of T = r/ro, that is, T 2 0.6 for the present test
data, because:

1. The formula used here (method 1) leaves the emission arbitrary at
the boundary.

2. Expansions of the form of equation (4) tend to oscillate as r/ry, > 1.

Point (2) is a result of the emission-function peak at an intermediate point,
around T = 0.5, which decays rapidly as T increases toward unity. Thus,
the present method is not suitable for calculating the emission at large radial
distances when the slopes are changing rapidly (see fig. 2). At the origin,
however, even a 3-zone formula of either method 1 or 2 gives a satisfactory
result. As seen from figure 3, existing methods are satisfactory at large
radial distances. It is possible to improve the present method for large r,
for example, by expanding in power series around 1, instead of the origin;

. however, no such attempt was made since
' Method  Zone No. most existing methods yield satisfactory
——— | results in this region.

—_——— 2

|
: 2
= |

|

2
Bockasten (Ref. 6}, 20 zone

»
T
nNO

Data Set No. 2

QO0D
oUudpROWW

Figure 3(b) compares different
formulas of methods 1 and 2 with that of
Bockasten for the second set of data.

To avoid congestion, results are shown
for selected radii for 2-, 4-, and
5-zone cases. For the 2-zone cases, the
emission values are shown only at the
origin and approximate midradius

T = 0.47, because these are sufficient
to define the curve.

w
I

Emission intensity, e, arbitrary umits

IS
T

The Bockasten inversion, like that
of Nestor and Olsen (fig. 3(a)), yields
a sharp peak in emission at the origin.
For the reason noted earlier, the
Bockasten value at the origin cannot be
trusted. For the rest of the range,
except near the plasma boundary,

(0] .25 .50 75 1.0
r=r/rg

(b) Data set no. 2 methods 1 and 2 formulas of order 3 and
C above yield results that agree closely
Figure 3.- Concluded. with that of Bockasten. Generally, the

11



higher order formulas tend to oscillate near the boundary. The amplitude of
the oscillations are greater for method 1 than for method 2, which assumes
that emission vanishes at the boundary. In particular, the 3-zone formula of
method 2 agrees closely with the Bockasten result over the entire radius
range. This agreement may be fortuitous and cannot be expected as a rule.
Because none of the existing methods is accurate at the origin, it is not
possible to assess the absolute accuracy of the present method at the origin.
Such accuracy is strongly suggested, however, by the consistency of results
yielded by all the formulas of different order, and by the mathematical rigor
of the present method. Even a 2-zone, 2-term formula gives a value accurate
to within 5 percent at the origin.

The present method results in high accuracy for data set no. 2 because
the emission variation with radius is well behaved (fig. 3(b)). That is, the
emission decreases monotonically toward the boundary, and the change in the
slope of decay is gradual over the entire radius range. Because such a varia-
tion can be approximated accurately by a polynomial, a high degree of accuracy
can be expected.

DISCUSSION

The sensitivity of the inversion to the initial input error in integrated
intensity is shown in table 5. The numbers in the table represent the ratio
of the output error in emission at the radii indicated to the input error in
integrated intensity. Thus, for example, if one uses the 4-zone, 5-term for-
mula for data set no. 1, and if the integrated intensity at r = 0.5r5 is
misread by 1 percent, the emission suffers an error of 1.18 percent at that
point. The 2-zone, 2-term, and 3-term calculation for data set no. 1 are not
listed because the 2-term formulas are inappropriate.

As shown, the present method is much less sensitive to experimental error
than the existing methods, at least in the range 0 < r < 0.5ry5. Note that
the amplification of initial error is small with the present method even though
the coefficients in the expressions of bj in tables 3 and 4 are large num-
bers, especially for large m. It is essential, however, that the values of
P(jro/M) be represented by a sufficiently large number of digits in the calcu-
lation of b; for all i. A lower order formula magnifies the input error
to a lesser degree. Again, this is expected: the greater the number of inter-
vals at which a value of integrated intensity is read, the smaller the magnifi-
cation of error by differentiation. For the same zone division, method 1
magnifies the error the least.

Any error in the determination of the overall radius of 1, 1is magnified
by the inversion process. To determine the factor of magnification of such an
error, one first changes r, deliberately by an amount Ar, so that the jth
zone point is shifted by (j/M)Ar,, and computing the emission function e on
the basis of the values of P at the new zone points. This calculation is
carried out for data set no. 2 for the present method and for the 10-zone
Bockasten formula. Table 6 shows the results of the calculation., The figures
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TABLE 5.- COMPARISON OF INVERSION METHODS FOR MAGNIFICATION?

Bockasten (ref. 6)

M= 20
Nestor and Olsen
(ref. 7)
M= 20
M= 50
Method 1
m= 2
m=3
m=4
m=25
Method 2
m= 2
m= 3
m= 4
m=2>5

OF EXPERIMENTAL ERROR

r=20

2.77
3.47
4.16

3.11
4.02
4.97

Data set no. 1 Data set no. 2
T = To/2 r=20 T = T5/2
1.88 14.2 3.08
2.17 11.8 3.40
5.43 29.5 8.50
- 1.44 .20
.61 1.90 .27
.76 2.38 .33
.91 2.85 .40
- 1.42 .26
.91 2.03 .37
1.18 2.85 .52
1.46 3.46 .63

a . . .. . . .
Ratio of the error in emission intensity e(r) to the error in the
integrated intensity P(x).

TABLE 6.-
M= 2
Method 1 1.14
Method 2 1.14
Bockasten -

M=3

1.51

1.67

COMPARISON OF PRESENT AND BOCKASTEN INVERSION METHODS
FOR MAGNIFICATION OF ERROR IN r. *

[e]

*Ratio of error in emission intensity at the
for data set no. 2.

in 1y to the error in

Too

M=4 M=35 M =10
. 1.67 1.72 ———
1.70 1.57 N
- -—- 1.18
origin caused by the error
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in the table represent the magnification factor, that is, the ratio of the
error in the resulting emission intensity at the origin e(0) caused by the
error in r, to the error in r, itself. The 10-zone (rather than 20-zone)
Bockasten formula was used because it was difficult to read small changes in
P(x) caused by the shifting of x by (j/M)Ary. As indicated by table 6, the
magnification of the error in ry; by the inversion remains the order of unity
for both the present and Bockasten's methods.

In the present method, a truncation error exists in addition to the
experiment-originated errors mentioned above. Because the basic polynomial
representations, equations (3) and (4), truncate a Maclaurin infinite series
at the mth term, there always exists an error of the same magnitude as the
m + 1 term. The accuracy of the present method depends, among other things,
on how accurately the functions e and P can be approximated by the forms of
equations (3) and (4). The truncation error is small near the origin, but
becomes large at large 7T, especially for large m, making the present method

invalid at large r.

The curvature of emission variation with radius at the axis is given in
the present method as
d%e
=~ _ 2b1
dr?

where b; 1s as listed in tables 3 and 4. The accuracy of the derived curva-
ture will improve as the degree of the polynomial is increased provided that
the input data are absolutely accurate. None of the existing methods, however,
can satisfactorily resolve emission profile curvature on the axis of symmetry.

When the integrated intensity is not known at equally spaced points
x = jry/M, the formulas of tables 3 and 4 cannot be used. The present method
can still be applied, however, with a minor modification: The curve of the
form of equation (4) must be fitted to the experimental data; then the coeffi-
cients bj can be determined as in appendix A or table 2.

Method 2 should be used if the emission is known to vanish at the
boundary and if the values near the boundary are desired. Otherwise, method 1
is preferable because it is insensitive to initial input error. The required
number of zones depends on the type of variation of integrated intensity. If
the integrated intensity varies such that the emission varies monotonically
with radius, and if there are no more than two inflection points, as in fig-
ure 4, a 3-zone subdivision should be adequate. If there is no inflection
point in integrated intensity, as when the boundary is a bow shock wave over a
spherical body moving through the atmosphere at very high speeds, a 2-zone
formula may be accurate enough. The order of zoning should be increased as
the number of inflection points is increased, because otherwise the polynomial
cannot properly describe the variation. If it is not known a priori how many
inflection points the emission function has, the calculation should be
repeated with various zonings. The required number of zones will have been
reached when further increases fail to change the calculated emission values.

14



The present method can be used most advantageously in experiments to
determine the conditions of plasma produced in facilities for aerothermody-
namic testing. In most such experiments in wind tunnels or shock tubes, it
is necessary only to know the condition of the plasma at and near the center-
line, that is, the emission and curvature at the origin. Also, in many cases,
the flows produced in such facilities have maximum emission on the axis of
symmetry, which is favorable for the present method.

CONCLUSIONS

The method for Abel inversion described uses only a few measured values
of integrated radiation intensity. The emission intensity is described by an
even-power polynomial in the radial coordinate r, the coefficients of which
are determined to best fit the measured intensity. The inversion is accurate
near the axis of symmetry, and breaks down at large radial distances. It is
also more accurate when emissivity decreases monotonically toward the boundary
than otherwise. The magnification of error in the inversion is much smaller
than that present in other methods.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Oct. 2, 1969
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APPENDIX A
DETERMINATION OF b; FROM a3

By differentiating equation (4), one obtains

m
S 2k+1 N 2 _
N Zk PR [2060 s Doy o? - @+ Day (a1
=0

Then one evaluates the integral

k
To 2k+1
_ X dx _ 1 20\ (2k - 22\ o3 2(](-2,)
Q, = - = = — E ( >< _ )r r (A2)
k J; ﬁxz _ 1‘2) (roz _ Xz) 2 4k £ k 2 o

£2=0
Substitution of equations (Al) and (A2) into equation (2) yields
m
1
e(r) = - = E [(Zk + 2)ak+1r02 - (2k + 1)a_kJQk (A3)
k=9
Equating the coefficients of corresponding powers of r in expressions (3)
and (A3), we obtain the coefficients by
m
1 1 {2k - 21 —2if2i
b. = = 4 ¢ 2k-21 [ _ _ 2
(B ) v - ]
k=1
In terms of the ay, equation (A4) becomes
m
= - 2k-21
b, E [(Zk + DB 2kBk_1’i]r0 a (A5)
k=i

where

T S B e T e B e (A6)
k,i 241( k - 1 i

The explicit numerical form of equation (A5) is presented in table 2 for values
of m up to 5.
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APPENDIX B

DETERMINATION OF a; AND b; FROM P(xj) FOR EQUALLY SPACED X5

In the solution of equation (5), the values for P(x) are assumed known
at equally spaced points X5

=1
xj =M T’
Then equation (5) can be written as

P(jr, /M) - <jro>2k
r A1 - G2 At KT (L)

Letting Y be a vector with components y:, X a matrix with components
Xjk’ and A a vector with components aj, Where

P(ir /M) jr_\2k
y. s Xjk = = , and X =1

I 1 G2 v -

we have the matrix representation of equation (Bl)
Y = XA
Now we can find a solution matrix X ! so that the ap can be given by

m

",
j=0

Substitution of equation (B2) into (A5) yields

m m

= _ 2k-2ny-1
bi = E [ﬁZk + 1)Bk,i ZkBk—l,i]ro ijyj (B3)
k=i j=0

where Bk,i is given in equation (A6). The numerical form of equation (B3)
is presented in tables 3 and 4 for values of m up to 5.
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